To show how the lengths of fencing and the areas of the animal pens are related, you may have written an equation equivalent to $A=\frac{L^2}{4\pi}$, or perhaps you wrote an equation equivalent to $L=2\sqrt{\pi A}$, where L stands for the length of fencing and A stands for the area of the enclosed circular animal pen. You could also have made a table showing some possible lengths and corresponding areas. Perhaps you even sketched a graph. How are these ways of showing relationships between varying quantities related to the specific way that the concept of function is defined?

Definitions of function

Function is defined in many ways. Consider the selection of informal and formal definitions of *function* from middle school, high school, and college-level mathematics textbooks in table 1.1.

Table 1.1
Textbook definitions of *function*

А	A function is a relationship between input and output. In a function, the output depends on the input. There is exactly one output for each input.
В	A function is a relation in which each element of the domain is paired with exactly one element of the range.
С	A function is a set of ordered pairs (or number pairs) that satisfies this condition: There are no two ordered pairs with the same input and different outputs.
D	A real-valued function f defined on a set D of real numbers is a rule that assigns to each number x in D exactly one real number, denoted by $f(x)$.
E	A function is a rule that assigns to each element of a set A a unique element of a set B (where B may or may not equal A).
F	For any sets A and B , a function f from A to B , f : $A \rightarrow B$, is a subset f of the Cartesian product $A \times B$ such that every $a \in A$ appears once and only once as the first element of an ordered pair (a, b) in f .
G	A function is a mapping or correspondence between one set called the domain and a second set called the range such that for every member of the domain there corresponds exactly one member in the range.
Н	One quantity, H , is a function of another, t , if each value of t has a unique value of H associated with it. We say H is the value of the function or the dependent variable, and t is the argument or independent variable. Alternatively, think of t as the input and H as the output.

Sources:

Definitions A and B, Holliday et al. (2005), pp. 43 and 226, respectively.

Definition C, Interactive Mathematics Program (2000), p. 5.

Definition D, Edwards and Penney (2002), p. 2.

Definitions E and F, Usiskin et al. (2003), pp. 68 and 70.

Definition G, Saxon (2003), p. 152.

Definition H, Hughes-Hallet et al. (1994), p. 2.

Note: Italics as in originals; definition D defines real-valued functions only.