1. Open Radian Measure Present.gsp. Press the Go button.

As the radius segment rolls around the circle, explain that students can think of a radian as the angle that corresponds to one length of the radius being laid out along the circumference of the circle.

- Q1 How long is the blue segment? [It's equal to the radius of the circle.]
- **Q2** What do the red ticks mark off? [Each tick marks a distance of one radius and an angle of one radian.]
- 2. Press Reset; then 1 Radian. The animation stops after marking off one radian.
- Q3 About how many degrees are there in one radian? To coax a good guess, point out the triangle formed by points A, B, and C. You can think of arc BC as a side of the triangle. That would make it an equilateral triangle, but one of the sides is not straight. Would that make $\angle BAC$ greater than 60° or less than 60°?
- 3. Press *Show Central Angle*. It will show that $\theta \approx 57.30^{\circ}$.
- 4. Press Semicircle.
- **Q4** Count the tick marks. How many radians are there in a semicircle? [a little more than 3]

5. Change the Angle Units to radians. Angle θ appears as 1π radians.

- 6. So a semicircle has π radians. That means that a circle must have 2π radians. Press 1 *Circle* to confirm that.
- Q5 But you already knew that, didn't you? What is the circumference in terms of r? $[2\pi r]$ So how many times will the radius go into the circumference? $[2\pi]$ So how many radians are there in a circle? $[2\pi]$
- 7. Press *Reset*; then press *Go*. Press *Go* again to stop the animation with θ somewhere between 0 and 2π . Press *Show Arc*.
- 8. Here is something you can do with radians, but not with degrees. Choose **Number** | **Calculate**. Enter $\theta \cdot r$. Compare the calculation with the measured length of the arc. Try it with several different values of θ and r.
- **Q6** The formula for area of a sector is $\frac{\theta}{360^{\circ}} \pi r^2$. Convert the 360° to radians and simplify. What is the new formula? $\left[\frac{\theta r^2}{2}\right]$
- 9. Press *Show Sector*. Use the Sketchpad Calculator and enter $\theta \cdot r^2/2$. Compare the answer to the measured arc length.

To change the angle units, choose Edit | Preferences.

When entering numbers that are on the screen, click the measurement itself.