

Rotation:

1. Open the Geometer's Sketchpad file Transformations.gsp. Access the fifth section on Rotation (or choose the tab "Rotate" at the bottom of the page).
2. Click on "Show Rotation of $\mathbf{9 0}$ ". What happens to the coordinates of the vertices of the figure after a rotation of 90° ?
3. Grab any point and drag it around the screen. Does your hypothesis regarding the coordinates still hold true when a new figure is formed? \qquad
4. Generalize your hypothesis into a rule that will illustrate the changes in the coordinates?

Rotation: $\mathrm{R}_{90^{\circ}}(\mathrm{x}, \mathrm{y}) \rightarrow(\quad, \quad)$
5. Highlight one of the sides of the original figure. Choose MEASURE from the toolbar at the top of the page. Choose Length. The length of the segment will appear on the page. Record this length. \qquad
6. Highlight the corresponding side of the image figure. Choose MEASURE, Length. Record this length. \qquad
7. Do the sides of a figure maintain their lengths through a rotation of 90° ? \qquad

8.. Click on "Hide Rotation of 90°." Click on "Show Rotation of $\mathbf{1 8 0}^{\mathbf{o}}$ ". What happens to the coordinates of the vertices of the figure after a rotation of 180° ? \qquad
9. Grab any point and drag it around the screen. Does your hypothesis regarding the coordinates still hold true when a new figure is formed? \qquad
10. Generalize your hypothesis into a rule that will illustrate the changes in the coordinates?

$$
\text { Rotation: } \mathrm{R}_{180^{\circ}}(\mathrm{x}, \mathrm{y}) \rightarrow(\quad, \quad)
$$

11. Highlight one of the sides of the original figure. Choose MEASURE from the toolbar at the top of the page. Choose Length. The length of the segment will appear on the page. Record this length. \qquad
12. Highlight the corresponding side of the image figure. Choose MEASURE, Length. Record this length. \qquad
13. Do the sides of a figure maintain their lengths through a rotation of 180° ? \qquad

14. Click on "Hide Rotation of 180°." Click on "Show Rotation of $27 \mathbf{0}^{\circ}$ ". What happens to the coordinates of the vertices of the figure after a rotation of 270° ? \qquad
15. Grab any point and drag it around the screen. Does your hypothesis regarding the coordinates still hold true when a new figure is formed? \qquad
16. Generalize your hypothesis into a rule that will illustrate the changes in the coordinates?

$$
\text { Rotation: } \quad \mathrm{R}_{270^{\circ}}(\mathrm{x}, \mathrm{y}) \rightarrow(\quad, \quad)
$$

17. Highlight one of the sides of the original figure. Choose MEASURE from the toolbar at the top of the page. Choose Length. The length of the segment will appear on the page. Record this length. \qquad
18. Highlight the corresponding side of the image figure. Choose MEASURE, Length. Record this length. \qquad
19. Do the sides of a figure maintain their lengths through a rotation of 270° ? \qquad

20. Access the fifth section on Rotation Any Angle (or choose the tab "Rotate Any Angle" at the bottom of the page).
21. Click on the circle at the top of the right hand side at point R and move the point. Watch the rotation of the triangle. Do your observations support your formulas stated above? \qquad

When you close the program, do NOT save the changes.

By NOT saving the changes, the program will remain in its original state with the original settings.

