

## SKETCH AND INVESTIGATE

- **Q1** As you drag point *D*, point *F* moves horizontally.
- **Q2** As you drag point *E* around the circle, point *F* moves vertically up and down like a sewing-machine needle.
- **Q3** Answers will vary. Students might sketch a path somewhat like the curve below.
- **Q4** The sketch will look something like this. Also, if students leave the animation running, they will probably get a series of curves like this that will start to fill in the area around the curve.



- **Q5** The unit circle has a circumference of  $2\pi$ , about 6.28 grid units.
- Q6 For the trace to repeat itself without tracing a new curve, the length of  $\overline{AB}$  must be an integer multiple of the circumference of the circle. The circumference of the circle is  $2\pi$ , about 6.28 grid units, so the x-coordinate of point B should be about 6.28.



In this exploration you'll construct an animation "engine" that traces out a special curve called a *sine wave*. Variations of sine curves are the graphs of functions called *periodic functions*, functions that repeat themselves. The motion of a pendulum and ocean tides are examples of periodic functions.

## SKETCH AND INVESTIGATE

1. Construct a horizontal segment AB.



- 2. Construct a circle with center A and radius endpoint C.
- 3. Construct point D on  $\overline{AB}$ .
- 4. Construct a line perpendicular to  $\overline{AB}$  through point D.
- 5. Construct point *E* on the circle.
- 6. Construct a line parallel to  $\overline{AB}$  through point E.
- 7. Construct point *F*, the point of intersection of the vertical line through point *D* and the horizontal line through point *E*.
- Q1 Drag point D and describe what happens to point F.
- **Q2** Drag point *E* around the circle and describe what point *F* does.
- **Q3** In a minute, you'll create an animation in your sketch that combines these two motions. But first try to guess what the path of point F will be when point D moves to the right along the segment at the same time that point E is moving around the circle. Sketch the path you imagine.
- 8. Make an action button that animates point D forward along  $\overline{AB}$  and point E forward around the circle.
- 9. Move point *D* so that it's just to the right of the circle.
- 10. Select point *F*; then, in the Display menu, choose **Trace Point**.
- 11. Press the Animation button.

Select point D and  $\overline{AB}$ ; then, in the Construct menu, choose Perpendicular Line.

Don't worry, this isn't a trick question!

Select points *D* and *E* and choose Edit | Action
Buttons | Animation.
Choose forward in the Direction pop-up menu for point *D*.



- Q4 Sketch the path traced by point F. Does the actual path resemble your guess in Q3? How is it different?
- 12. Select the circle; then, in the Graph menu, choose **Define Unit Circle.** You should get a graph with the origin at point A. Point B should lie on the x-axis. The y-coordinate of point F above  $\overline{AB}$  is the value of the sine of  $\angle EAD$ .



- **Q5** If the circle has a radius of 1 grid unit, what is its circumference in grid units? (Calculate this yourself; don't use Sketchpad to measure it because Sketchpad will measure in inches or centimeters, not grid units.)
- 13. Measure the coordinates of point *B*.
- 14. Adjust the segment and the circle until you can make the curve trace back on itself instead of drawing a new curve every time. (Keep point *B* on the *x*-axis.)
- **Q6** What's the relationship between the x-coordinate of point B and the circumference of the circle (in grid units)? Explain why you think this is so.